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Contents

* Primarily focus on two images, i.e. pairwise matching (e.g.
stereo, optical flow, wide-baseline, cross scene), though
sometimes with more images

What we learn today
= |CME 2015 tutorial (3 hours) + Work on discrete
labeling optimization — Many works on applications
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Outline

Part 0: Introduction (5 min)

Part 1: Evaluating matching evidence (40 min)

Part 2: Regularizing the estimates: labeling optimization (40 min)
Part 3: Conclusions and future directions (5 min)
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1Indn'é_:f:d, one of the oft-told stories is that when a student asked Takeo
Kanade what are the three most important problems in computer vision, his
reply was: “Alignment, alignment, alignment!”. [Aubry et al., CVPR’14]

Correspondence, correspondence,
correspondence

e |mage alignment
e |mage registration
e |mage matching

e QOptical flow

e Stereo
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A number of challenges

Large displacement
Non-rigid motion

Independent object motion a Robust

Small objects

Photometric differences (e.g. exposure, tone, sharpness)
Weakly textured regions

Matching across different scene contents

ey Dense
Motion coherence vs. boundary/detail preserving

Precision vs. recall, density, spatial coverage/distribution
Computational load

Memory cost a Fast

Large hypothesis space
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Applications of Dense Correspondences

CVPR 2014 Tutorial
Dense Image Correspondences for Computer Vision

Ce Lin! Michael Rubinstein! Jaechul Kim? Zhuowen Tu?
IMicrosoft Research 2Amazon -UCSD

Input image = Mearest neighbors
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[Hassner “13]

[Hassner&Basri ‘06a, ‘06b, 13]

Why is this
useful?

[Hassner, Saban & Wolf]

[Liu, Yuen & Torralba
’11; Rubinstein, Liu &
Freeman’ 12 ]
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Taxonomy (a matrix form)
Typical MAP setup: Matching evidence term with
build-in coherence or smoothness regularization

* Matching evidence * Regularization
evaluation — Local aggregation
— General local features — Non-local/semi-global

aggregation or
regularization
— Similarity measures — Global

— Specific tuned features

— Learned discrete/continuous

features/measures labeling optimization

— Continuous variational
models

— Non-parametric motion
models
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What decides the performance of visual correspondence?

1. How well can we describe input images in a local manner?

Image gradients Keypoint descriptor

2. How well can we optimize an objective defined for estimating
visual correspondence?

Ex) Belief Propagation
(message passing algorithm)

%7
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General Formulation

* Find the label [,, for each pixel p, for instance, by minimizing the
following objective consisting of the data fidelity E;, and the prior
term £y,

E = ZE W)+ Y Y Byl

P q€N, S

/ \
Y N

'8 ~A

Evaluating matching evidences with Enforcing the spatial smoothness constraint
local image descriptors or matching

similarity measures
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General Formulation: Local vs. Global?

* Local approaches

— Using the data fidelity term only
— Typically, aggregating the data

cost with edge-aware filtering

E=) Ey(y;W)
P

Cost Volume Filtering, CVPR 2012
PatchMatch Filter, CVPR 2013

* Global approaches

— Using both the data fidelity and
prior terms

— Optionally, aggregating the data
cost with edge-aware filtering for
stronger performance

B = ZEP W)+ > Epgllp, ly)

P q€EN,

|W| = 1, No cost aggregation

Belief Propagation, 1JCV 2006
PatchMatch Belief Propagation, 1JCV 2014
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PART 1: EVALUATING MATCHING EVIDENCES:

LOCAL IMAGE DESCRIPTORS AND MATCHING SIMILARITY
MEASURES

ADSCY FILLINOIS



Part 1: Evaluating matching evidences: local image
descriptors and matching similarity measures

Descriptors for matching (sparse) interest points
— SIFT [1], BRISK [2], BRIEF [3], Affine SIFT (ASIFT) [4]

Descriptors for dense wide-baseline matching
— DAISY [5]

Descriptors for semi-dense large displacement matching
— Deep Matcher [6]

Descriptors for matching semantically similar image parts (e.g. cross-domain
matching)

— Local Self-Similarity (LSS) [7], Locally Adaptive Regression Kernels (LARK) [8]

Similarity measures for handling photometric and multi-modal variations

— Rank Transform, Census transforms [9], Mutual Information (MI) [10], Normalized Cross-
Correlation (NCC) [11], Zero-mean Normalized Cross-Correlation (ZNCC) [12], Dense
Adaptive Self-Correlation (DASC) [13]

Future work/trend: Learned matching similarity from CNN models, e.g. [CVPR’15]

— Computing the Stereo Matching Cost With a Convolutional Neural Network [full paper] [ext. abstract]
Jure Zbontar, Yann LeCun

’’’’’’
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SIFT Descriptor: matching sparse points

* SIFT descriptor: 3-D histogram

— 2D spatial dimension + 1D dimension (image gradient direction)

— Each bin contains a weighted sum of the norms of image

gradients.

W,

' pixel grid

L

Keypoint

15

15/37
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SIFT Descriptor: matching sparse points

e SIFT (Scale Invariant Feature Transform) [Lowe’2004’1JCV]

— The most popular descriptor thanks to distinctiveness and invariance to a variety of
common image deformation.

— Step 1. Image Gradient Magnitude & Orientation Computation

m(x!y) = \/(L(x + 1!y) - L(x_ 1'y))2+(l‘(x!y + 1) - L(x'y - 1))2
0(x,y) = tan” ' ((L(x,y + 1) — L(x,y — 1)))/(L(x + 1,y) — L(x — 1,3)))

— Step 2. Gaussian Weighting Function
* To avoid sudden changes in the descriptor with small changes.

Gradient computation Gradient distribution Gaussian weighting function g%,
16 & :2%
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SIFT Descriptor: matching sparse points

e SIFT (Scale Invariant Feature Transform) [Lowe’2004’1JCV]

— Step 3. Gradient Orientation Histogram

* Divides its neighborhood (e.g. 16 X 16) into a 4 X 4 cell array, quantizes the
orientation into 8 bins in each cell, and obtainsa 4 X 4 X 8 = 128 dimensional
vector as the SIFT for a pixel.

— Step 4. Feature Vector Normalization
* To reduce the effects of illumination change.

Kk ¥
* 3% % |30
K RNF
AP A

Gaussian Weighting Gradient Orientation SIFT Feature Descriptor
Gradients Distribution Grid-Square Binning
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DAISY Descriptor

* DAISY [Tola’2010'TPAMI]

— SIFT works well for sparse wide-baseline matching, but it is very
SLOW for dense matching tasks.

— DAISY retains the robustness of SIFT and be computed efficiently.

: 4

NCC results SIFT results DAISY results ,;»'m
NCC: Normalized Cross Correlation 18 &*‘o’




DAISY Descriptor

e Gaussian convolved orientation maps
G,” = Gy * (0I/d0)"

— Gyx: Gaussian convolution filter with variance X
— dI/do: image gradient in direction o.

d
@ 070 Gz, 0 Gy O
. |
% ro—o— G —o— G —O0—--
. ! : z
;
v v v
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DAISY Descriptor

Step 1. Compute histograms for each pixel

hs(u,v) = [G* (W, v), G,” (W, V), ..., Gg~ (u, v)]”

hy(u,v): histogram at (u, v)

Glz(u, v): Gaussian convolved orientation maps
Step 2. Normalize histograms to unit norm

Step 3. DAISY descriptor is computed as

[hs, (u, ), '
hs, (L (w,v)), .\ hs, (Iy(u,v)),
hs, (L (w,v)), .\ hs, (Iy(u,v)),
hs., (L (w,v)), .\ hs, (In(u,v))]

D(uOr vO) —

%7 S
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DAISY Descriptor

direction—j

DAISY Feature Descriptor
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SIFT & SURF & DAISY Comparison

N 3
_’ﬂ gy - ® -

Ground Truth




PART 1.2: LOCAL SELF-SIMILARITY

ADSCH. J§ LLINOIS




Conventional Image Descriptors

* Measuring image properties from images.
— Gradient, edge, or spatial structures

J Gradients features

‘ || | Color features

Does It describes underlying visual Property?

y gms



Conventional Descriptors vs. Self-Similarity

* Conventional Descriptors

— Direct visual properties shared by images of the same class (e.g. colors,
gradients,...)

e Self-Similarity
— Indirect property: Geometric layout of repeated patches within an image

ol
A U 4 4 A
A A
A : A
E kT e
A

Do Not share common image properties (colors, textures, edges), but Do
share a similar geometric layout of local internal self-similarities. .-,

PN
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Local Self-Similarity (LSS) Descriptor

* Explore local internal layouts of self-similarities

26 &ﬂ'ﬂ“



Local Self-Similarity (LSS) Descriptor

e Step 1: Compute self-similarity on correlation surface

— Determine N X N correlation surface C(i,))

C(i,j) = exp (—=SSD(F;, F;)/0s)

e Step 2: Transform into log-polar coordinates, and select the

= ————

maximal correlation value in each bin n s

i
I
! U od e o )
i
I

JLSS — 2. 4 i /J A
o = max {C(i, 7)) N ANHTA

o Y

This descriptor vector is normalized by linearly

il ™
'\_\___

stretching its values to the range [0..1]
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Local Self-Similarity (LSS) Descriptor

Step 1: Compute correlation surface.

Step 2: Transform into log-polar coordinates, and select the maximal correlation
value in each bin.

Input image Correlation Image
surface descriptor

&

Correlation Video
volume descriptor




Properties and Benefit of LSS Descriptor

Locality

— Self-similarities are treated as a local image property, and are
accordingly measured locally (within a surrounding image region).

Robust to Affine Deformation

— The log-polar representation accounts for local affine deformation in
the self-similarities.

Robust to Non-Rigid Deformation

— Insensitive to the exact position of the best matching patch within
that bin (similar to the observation used for brain signal modelling).

Meaningful Image Patterns

— The use of patches (at different scales) captures more meaningful
image patterns than individual pixels.

29 gﬂh}
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LSS Descriptor Applications

* Object Recognition, Image Retrieval, Action Recognition
— Ensemble matching [Shechtman CVPR 07]
— Nearest neighbor matching [Boiman CVPR 08]

— Bag of Local Self-Similarities [Gehler ICCV09, Vedaldi ICCV09,
Horster ACMMOS8, Lampert CVPR09, Chatfield ICCV09]

1. Compute LSS descriptors for an image.
2. Assign the LSS descriptors to a codebook.
3. Represent the image as a histogram of LSS descriptors.

%7 S0
%°
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Interest Object Detection in Images

Single template image

The images against which it was compared with the
corresponding detections. N
31 &ﬂ'ﬂ‘,
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Image Retrieval by “Sketching”

]
X Hand-sketched template

The images against which it was compared with the
corresponding detections.

-
32 Hm;
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Comparison to Other Descriptors

Img 1 Img 2 LSS GLOH Shape M
(template) (extended SIFT)  Context




EXTENSION OF LSS DESCRIPTOR TO MULTI-
MODAL MATCHING

ADSC. *° LLLINOIS




Can we find correspondences in the images below?

Yes! It is possible using our new descriptor (DASC).

DASC: Dense Adaptive Self-Correlation Descriptor for Multi-modal and Multi-
spectral Correspondence, CVPR 2015

35 &ﬂ'ﬂ“



Image Descriptor Matters!

DASC: Dense Adaptive Self-Correlation Descriptor for Multi-modal
and Multi-spectral Correspondence, CVPR 2015

. ¢
Wrn‘_?::rjnj!}““l

Ty T my U oy T my
Wy 2] } Wy r Wy =, I Wy 2] Wy
T T —— Ty St B [T — 2 T — 1T P T — Ty L= W T ) f—

T ——

oy S 0y Ny
e e Y ey gy e T e Y e ey e I i Y [y et I e Y ey e T e Y e gy

e

(a) (b) (c) (d) (e) (f)
Figure: Comparison of dense correspondence for different exposure images and
blurred-sharpen images for (a) input image pairs, (b) RSNCC, (c) BRIEF, (d) DAISY,

(e) LSS, (f) DASC. The results consist of warped color images and 2-D flow fields. {lﬁ}
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Our Goal

B Our Goal _

1) Addressing photometric distortions in multi-modal and
multi-spectral images
2) The descriptor should be dense, and be computed very efficiently

AN

J

Contribution

1. A patch-wise receptive field pooling with sampling patterns
optimized via a discriminative learning.

2. An efficient scheme using edge-aware filtering (EAF)
to compute dense descriptors for all pixels

3. Anintensive comparative study with state-of-the-art methods
using various datasets.

37
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Problem of Existing Descriptors

* Challenging limitations in multi-modal and multi-spectral images

— Nonlinear photometric deformation even within a small
window, e.g., gradient reverses and intensity variation.

— OQOutliers including structure divergence caused by shadow or
highlight.

» Most of the existing descriptors may fail to compute a
reliable descriptor in the images below.

7
Ay
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Existing Work: Local Self-Similarity (LSS) Descriptor

The local self-similarity (LSS) [1] may be useful in overcoming many
inherent limitations of existing descriptors in establishing
correspondence between multi-modal images.

An input image f; : Z — R or R>, a dense descriptor D; : T — RL

is defined on a local support window centered at each pixel i

Key idea: The local internal layout of self-
similarities is less sensitive to photometric
distortions

—

= =
‘R 1 i
L H
e -

___“_Bini,.(_f/)/ )

-
—

/
."l
|

/

[1] E. Schechtman and M. Irani. Matching local self-similarities across images and videos, CVPR, 2007.

39
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Existing Work: Local Self-Similarity (LSS) Descriptor

Formally, D5 = U,dLSS for ' = 1, ....AL5° iga 1155 % 1
feature vector, and can be written as follows:

dLSS = max {C(i,j)},
Jj€bin;(/) C(i,j) = exp (—SSD(F;, F;)/os)

where bin,-(l) = {j’] e Ri, pr—1 < ’I' —j’ £ Ppslly_g £
(i —Jj) < 6a}.

40 &mﬁ'
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Problem of Existing Descriptors (including LSS)

However, even LSS often produces inaccurate correspondence.

“lr.

025 T T T T T 026 - - - - - 03 T T T T T y
oy P —SIFT 02l —SIFT | .l —SIFT [
#F b Taly ---BRIEF| ! - - -BRIEF) : - --BRIEF |

matching cost

ground truth

01 I L I I L 0.06 I I I I I 012 I I I
-15 -10 =B 0 5 10 15 -15 -10 5 0 5 10 15 =15 -10 -5 0 5 10 15

search range search range search range

(a) Matching cost in A (b) Matching cost in B (c) Matching cost in C

Figure: Examples of matching cost comparison. Multi-spectral RGB and NIR images
have locally non-linear deformation as depicted in A, B,and C. ~ #7°%

PN
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Dense Adaptive Self-Correlation (DASC)

~— Limitation of the LSS descriptor N

1) The center-biased max pooling is very sensitive to the degradation of a center
patch.

2) No efficient computational scheme designed for computing dense descriptor
o J

4

Intuitions for the DASC Descriptor

1) There frequently exist non-informative regions which are locally degraded,
e.g., shadows or outliers.

2) The randomness enables a descriptor to encode structural information more
robustly.

%7 S

o
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Center-biased dense max pooling vs. Randomized pooling
— Note that the DASC descriptor does NOT use the max operation.

LSS vs. DASC

— The max operation may lead to wrong localization!

Rk N
A \\HH/ A
\-\._ ’,’
f "
bin (/)

(a) LSS descriptor

43

(b) DASC descriptor
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Randomized Receptive Field Pooling

* Using all sampling patterns does NOT always produce the best

results

» Let’s select a subset of sampling patterns randomly

» What about learning this sampling patters?

Randomized Receptive Field Pooling
o Let I ={jlj € Ri,|i —jl = pr, £(i — ) = 0a}.
e Our DASC descriptor D; = J,d;j for =1, ..., L is encoded

with a set of patch similarity between two patches based on
sampling patterns that are randomly selected from [;:

dij=C(sis, tir), siptig €Ty,

lth

where s; and t; are randomly selected sampling patterns.

44

Ex) 41 points

- # of possible sampling
pattern: 41 x 40/2

- Let’s just select 3
sampling patterns
randomly.
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Randomized Receptive Field Pooling

e Sampling Pattern Learning
— Key idea: Learn the sampling pattern using training pairs

From a large number of randomly generated pairs from [}, our
goal is to select the best sampling patterns.

e First, the feature ry, = |J, rm, that describes two support
window pairs RL and R?2 is defined

2
Fm, = €xp (—(d,%,,,, — i) /203) -

e T[he decision function to classify the training data set P as

- An amount of contribution of
p(rm) :@rm+b, each candidate sampling
pattern

where weight v indicates an a weight of sampling pattern.
e We use LIBSVM? to learn the weight function.

45 gﬂh}
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Randomized Receptive Field Pooling

 Sampling Pattern Learning

— The training data-set was built from images taken under varying
illumination conditions and/or imaging devices

— 1 1

L Joo L Jos

(2) (c)

Figure: Visualization of patch-wise receptive fields of the DASC descriptor which are
learned from (a) Middlebury benchmark, (b) multi-spectral and multi-modal
benchmark, and (c) MPI SINTEL benchmark.

‘‘‘‘‘‘
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The DASC Descriptor Formulation

With the sampling patterns learned, our next job is to compute the
self-similarity between two patches

Adaptive Self-Correlation (ASC) Measure

— For given two patches F, and F;, the patch-wise similarity is
measured using a truncated robust function

C(s,t) = max(exp(—(1 — |¥(s,t)]) /o), T)

— For (s,t) € U¥, we measure the Adaptive Self-Correlation (ASC)

Z ws s/ Wi, t’(fs’ - gs)(ft" - gt)

ftf

\/Z{w“ (For = GY", /5 (e (fu = G

U(s,t)

47



We wish to compute the descriptor densely!

* Straightforward computation of the ASC for the selected sampling
patterns of all pixels is extremely time-consuming.

O(INL) I: Image size, N: Patch size

L: the number of sampling patterns

Z ws,s’wt,t’(fs’ - gs)(ft’ B gt)

i

U(s,t) = ; =
\/2; {wo (f = GF 5 fwer(f — G}

Observation: There are computational redundancies in the equation
above when executing this for all pixels.

Our Solution: Let’s employ the constant-time edge-aware filter (EAF)
to reduce the redundancies

“““““
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Efficient Computation of DASC

One problem is the symmetric weight ws s/wt ¢+ varies for each
[, and it is 6-D vector, which increases a computational burden
needed for employing constant-time EAFs.

In order to make using EAF computationally feasible, we
approximate the ASC with an asymmetric weight

> Wserwi e (fsr — Gs)(fer — Gt)
L

N O e

Tal)=

~ Z wearkdo — G llls —Giz)
» B(i,j) = ———2 :

2wl = 8) Z wi i (Fir — Gi5)

il !

bo

z‘f

The similarity measure above can be computed in O(1) time using
e.g., the Guided Filter. But, Other kinds of EAFs can be used as well.

“““““
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Efficient Computation of Dense Descriptor

I: Image size, N': Patch size
Straightforward computation of ASC for the L: the number of sampling patterns

selected sampling patterns of all pixels

> ws Wit (fsr — Gs)(frr — Gt) O(INL)

Cigh

U(s,t) =
Yo Awsir (for = GY  [32 wrar(fr = G)Y

Efficient computation of approximated ASC for the
selected sampling patterns of all pixels using EAF

> wiir(fir — Gi)(f5 — Gij)
qj(zjj) = L 2 2 O(IL)
Z; wi,ir (fir — Gi) Zl wiir (fjr = Gig) No dependency on
’ i the patch size!

257 S04
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Overall Process of DASC Descriptor

EAF: Edge-Aware Filtering

SR /
L
image with sampling pattern Z

re-arrange :
B ,,--.----;-----g---,-,- DASC descriptor volume
sampling pattern - ¢//»f re- mdex
e

Gwdance Image” ; /
e = / ﬁ,—_-,-
/ ______ i e Gmdar:é.lmage
5,’ -

image T
Gmdance Image

Note that all pixels share the same sampling pattern!

92;" <2
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Computational Complexity Analysis

o Let /, N, and L represent an image size, a patch size, and the
number of sampling patterns, respectively.

e A straightforward computation is extremely time-consuming,
in specific, the computational complexity becomes O(/NL).

e Our approach removes the complexity dependency on the
patch size N, i.e., O(IL). Furthermore, since there exist
repeated offsets, the complexity is reduced as O(/L) for L < L.

image size | DAISY® LSS DASC* | DASCt
463 x 370 2.5s 31s 128s 5s

Table: Evaluation of computational complexity. The brute-force and efficient
implementation of DASC is denoted as * and T, respectively.

[6] E. Tola, V. Lepetit, and P. Fua, Daisy: An efficient dense descriptor applied to wide-baseline stereo, IEEE TPAMI, 2010.
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Experimental Environments

e We implemented the DASC descriptor in C4++ on Intel Core
i7-3770 CPU at 3.40 GHz, and measured the runtime on a
single CPU core without further code optimizations and
parallel implementation using multi-core CPUs/GPU.

e The DASC descriptor was evaluated with other state-of-the-art
descriptors, e.g., SIFT’, DAISY, BRIEF3, and LSS, and other
area-based approaches, e.g., ANCC® and RSNCC1°.

"D. Lowe. Distinctive image features from scale-invariant keypoints, 1JCV, 60(2):91-110, 2004.
8M. Calonder. Brief: Computing a local binary descriptor very fast, IEEE TPAMI, 34(7):1281-1298, 2011.

9Y. Heo, K. Lee, and S. Lee. Joint depth map and color consistency estimation for stereo images with different
illuminations and cameras, |IEEE TPAMI, 35(5):1094-1106

10y Shen, L. Xu, Q. Zhang, and J. Jia. Multi-modal and multi-spectral registration for natural images, ECCV,
2014.

XS]
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Parameter Setting

Our DASC descriptor is constructed with the following same
parameter settings for all datasets:
ta, T, B, M, L} ={0.5, 0.03,5 & 5,31 % 31, 126}

Effect of support window size Effect of descriptor dimension

35 . 20 , . ‘ ‘ i
—a— Exp. 0/1 - — TR . T —a— Exp. 0/1 ||
: | : 3 —&— Exp. 0/2 ; ' : ‘ —&— Exp. 0/2
S AR o o —— lllum. 1/2] —— lllum. 1/2]]
1 3 1 3 llum. 1/3 llum. 1/3}
Loy o O TR R g e T -

N
o

-
w

Error in unoccluded area (%)
Error in unoccluded area (%)

i v o s {5 o oo o2 e ¢ 52 s w2 g 2 v = P
L — : : —‘ k b
10 i | i | | 1 10 i i | | | |
5X5 9X9 13X13 17X17 21X21 25X25 20X29 33X3 50 100 150 200 250 300 350 400
support window size descriptor dimension

Figure: Average bad-pixel error rate on Middlebury benchmark of DASC+LRP
descriptor with WTA optimization as varying support window size and descriptor
dimension.
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Middlebury Stereo Benchmark

We first evaluated our DASCHLRP descriptor in Middlebury stereo
benchmark containing illumination and exposure variations.

Figure: Comparison of disparity estimation for Moebius image pairs taken under
illumination combination ‘0/2’. (from left to right, top and bottom) Left color image,
right color image, and disparity maps for the ground truth, ANCC, BRIEF, DAISY,
SIFT, LSS, DASC+RP, and DASC+LRP.
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Middlebury Stereo Benchmark

GC results under illumination variations GC results under exposure variations
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Figure: Average bad-pixel error rate on Middlebury benchmark with illumination
variations and exposure variations. The GC was used for optimization. Our
DASC+LRP shows the best performance.
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Multi-modal and Multi-spectral Image Pairs

(a) (<)
Figure: Comparison of dense correspondence for RGB-NIR images and flash-noflash
images for (a) input image pairs, (b) RSNCC, (c) BRIEF, (d) DAISY, (e) LSS, (f)
DASC. The results consist of warped color_images and 2-D flow fields.
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Multi-modal and Multi-spectral Image Pairs
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(a) (b) (<) (d) (e) (f)
Figure: Comparison of dense correspondence for different exposure images and
blurred-sharpen images for (a) input image pairs, (b) RSNCC, (c) BRIEF, (d) DAISY,
(e) LSS, (f) DASC. The results consist of warped color images and 2-D flow fields.
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Multi-modal and Multi-spectral Image Pairs

RGB- Flash- Diff. Blur- Ave

NIR noflash Exp. Sharp '
NRDC!H 54.27 | 48.92 | 51.34 | 59.72 | 53.56
ANCC 18.45 | 14.14 | 11.96 | 19.24 | 15.94
RSNCC 13.41 | 1587 | 9.15 | 18.21 | 14.16
SIFT 1851 | 11.06 | 14.87 | 20.78 | 16.35
DAISY 20.42 | 10.84 | 12.71 | 22.91 | 16.72
BRIEF 1754 | 921 | 9.54 | 19.72 | 14.05
| SS 16.14 | 11.88 | 9.11 | 18.51 | 13.91
DASC+RP 11.71 | 751 | 7.32 | 1221 | 9.68
DASC+LRP | 8.10 | 5.41 | 6.24 | 10.81 | 7.64

Table: Comparison of quantitative evaluation on multi-spectral and multi-modal
images: hierarchical BP optimization was used.

11y HaCohen, E. Shechtman, D. B. Goldman, and D. Lischinski. Non-rigid dense correspondence with s
applications for image enhancement, ToG, 2011. ’
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Concluding Remarks

* The robust novel local descriptor called the DASC has been proposed
for dense multi-modal and multi-spectral matching.

— Adaptive self-correlation measure and patch-wise receptive field pooling.

e Secret Source

— Speed: With the fast edge-aware filters (EAF), our DASC descriptor can
compute the dense descriptor very efficiently.

— Robustness and Accuracy: 1) Randomness + 2) Non-center biased sampling +
3) Adaptive Self-Correlation (ASC)

—

DASC descriptor volume
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